4.4 Article

High-Speed Hybrid Superconductor-to-Semiconductor Interface Circuit With Ultra-Low Power Consumption

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TASC.2012.2227918

Keywords

Interface; Josephson junction; RSFQ; superconductor electronics

Funding

  1. Army Research Office Grant [W911NF-10-1-0120]

Ask authors/readers for more resources

Superconductor electronics for high-performance computing and high-speed analog-to-digital converters requires multi-channel digital data links. Most difficult is the amplification of the weak signals from the superconductor circuit to the volt level of semiconductor electronics. We developed a hybrid digital interface based on a Josephson latching driver, the so-called Suzuki stack, and a clocked CMOS comparator. The input can be directly triggered by a single flux quantum pulse and the output provides a 1 V CMOS-level signal. In contrast to existing systems, our interface is optimized for ultra-low-power consumption to enable its application for parallel multi-bit data interfaces. We provide evaluation of various types of Suzuki stacks and various CMOS comparators. We present experimental data on the delay of the overall hybrid interface and the total power consumption. The bit-error rate has been measured to be below 10(-12). We will discuss the trade-off among circuit robustness, speed, and power consumption.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available