4.5 Article

Gradient-induced voltages on 12-lead ECGs during high duty-cycle MRI sequences and a method for their removal considering linear and concomitant gradient terms

Journal

MAGNETIC RESONANCE IN MEDICINE
Volume 75, Issue 5, Pages 2204-2216

Publisher

WILEY
DOI: 10.1002/mrm.25810

Keywords

cardiac magnetic resonance imaging; image-guided intervention; 12-lead ECG; gradient-induced noise; Maxwell's equations

Funding

  1. National Institutes of Health [R03-EB013873-01A1, P41EB015898]
  2. American Heart Association [10SDG261039]

Ask authors/readers for more resources

PurposeTo restore 12-lead electrocardiographic (ECG) signal fidelity inside MRI by removing magnetic field gradient-induced voltages during high gradient duty cycle sequences. Theory and MethodsA theoretical equation was derived to provide first- and second-order electrical fields induced at individual ECG electrodes as a function of gradient fields. Experiments were performed at 3T on healthy volunteers using a customized acquisition system that captured the full amplitude and frequency response of ECGs, or a commercial recording system. The 19 equation coefficients were derived via linear regression of data from accelerated sequences and were used to compute induced voltages in real-time during full resolution sequences to remove ECG artifacts. Restored traces were evaluated relative to ones acquired without imaging. ResultsMeasured induced voltages were 0.7 V peak-to-peak during balanced steady state free precession (bSSFP) with the heart at the isocenter. Applying the equation during gradient echo sequencing, three-dimensional fast spin echo, and multislice bSSFP imaging restored nonsaturated traces and second-order concomitant terms showed larger contributions in electrodes further from the magnet isocenter. Equation coefficients are evaluated with high repeatability (=0.996) and are dependent on subject, sequence, and slice orientation. ConclusionClose agreement between theoretical and measured gradient-induced voltages allowed for real-time removal. Prospective estimation of sequence periods in which large induced voltages occur may allow hardware removal of these signals. Magn Reson Med 75:2204-2216, 2016. (c) 2015 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available