4.7 Article

Eliminating Electromagnetic Scattering From Small Particles

Journal

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION
Volume 61, Issue 7, Pages 3747-3756

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TAP.2013.2256299

Keywords

Bi-anisotropic media; scattering

Ask authors/readers for more resources

This paper presents and discusses the conditions for zero electromagnetic scattering by electrically small particles. We consider the most general bi-anisotropic particles, characterized by four dyadic polarizabilities and study the case of uniaxially symmetric objects. Conditions for zero backward and forward scattering are found for a general uniaxial bi-anisotropic particle and specialized for all fundamental classes of bi-anisotropic particles: omega, moving, chiral, and Tellegen particles. Possibility for zero total scattering is also discussed for aforementioned cases. The scattering pattern and polarization of the scattered wave are also determined for each particle class. In particular, we analyze the interplay between different scattering mechanisms and show that in some cases it is possible to compensate scattering from a polarizable particle by appropriate magneto-electric coupling. Examples of particles providing zero backscattering and zero forward scattering are presented and studied numerically.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available