4.7 Article

Expanding the Scope of RAFT Polymerization: Recent Advances and New Horizons

Journal

MACROMOLECULES
Volume 48, Issue 16, Pages 5459-5469

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.5b00342

Keywords

-

Funding

  1. National Science Foundation [DMR-1410223]
  2. National Science Foundation Graduate Research Fellowship [DGE-1315138]
  3. American Chemical Society Petroleum Research Fund [53225-ND7]
  4. Direct For Mathematical & Physical Scien
  5. Division Of Materials Research [1410223] Funding Source: National Science Foundation

Ask authors/readers for more resources

Reversible deactivation radical polymerization (RDRP) has revolutionized modern polymer chemistry over the past two decades, thus laying the groundwork for the synthesis of complex macromolecules and enabling the preparation of previously inaccessible materials. Reversible addition-fragmentation chain transfer (RAFT) polymerization has emerged as one of the most promising techniques because of its functional group tolerance, applicability to a wide range of vinyl monomers, and its nondemanding experimental conditions. However, despite the promise and clearly demonstrated utility of RAFT, limitations of the method sometimes still exist, including the occasional need for extended polymerization times, limited access to high molecular weight polymers, low livingness due to unavoidable radical termination events, etc. This Perspective focuses on recent advances that have been specifically designed to address many of these perceived limitations to reinforce the promise of RAFT for the synthesis of complex and well-defined polymers under facile conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available