4.7 Article

Toward a Quantitative Description of Radical Photoinitiator Structure - Reactivity Correlations

Journal

MACROMOLECULES
Volume 49, Issue 1, Pages 80-89

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.5b02336

Keywords

-

Funding

  1. German Research Council (DFG) [BA 3751/9-2, UN 108/4-2]
  2. Helmholtz STN program of the Karlsruhe Institute of Technology (KIT)
  3. Australian Research Council

Ask authors/readers for more resources

The fundamental influence of the structure and substitution of radical photoinitiators was investigated via a trifold combination of pulsed-laser polymerization with subsequent electrospray-ionization mass spectrometry (PLP-ESI-MS), femtosecond transient absorption (fs-TA) spectroscopy, and quantum chemistry. For the first time, a library of benzoin-derived photoinitiators with varied substitution patterns was synthesized. In the PLP-ESI-MS study, different photoinitiators were compared pairwise in so-called cocktail experiments, enabling the direct comparison of their initiation efficiency. In the fs-TA experiments, the transient response was observed after UV excitation in the visible spectral region, allowing for a description of excited state dynamics, which was analyzed with the aid of TD-DFT calculations. Ab initio calculations were undertaken to determine the reactivity of the radical fragments generated from these photoinitiators and to quantify the influence of various substituents on the rate of addition to monomer. In summary, the influence of the substituent on the initiation efficiency, intersystem crossing (ISC) behavior, excited state dynamics, and the extinction coefficients were analyzed. Hence, relaxation pathways and reaction mechanisms were optimized to explain disparate initiation efficiencies of a wide range of newly designed photoinitiators with varying substitution patterns. The strongly divergent absorptivities of the different photoinitiators and their corresponding initiation efficiencies underline that the absorptivity of a molecule is by no means an unequivocal measure for its reactivity when excited at a specific wavelength. In fact, the most efficient initiators are governed by one n pi* singlet state with a very low extinction coefficient at the excitation wavelength and one or two triplet states with n pi* character.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available