4.7 Article

A Robotic System for Localization of Passive UHF-RFID Tagged Objects on Shelves

Journal

IEEE SENSORS JOURNAL
Volume 18, Issue 20, Pages 8558-8568

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSEN.2018.2865339

Keywords

Robotic localization; UHF-RFID; electromagnetic modeling; Kalman filtering

Ask authors/readers for more resources

This paper faces the problem of a robot that patrols a warehouse and localizes objects on shelves using RFID technology. A two-step localization system has been developed. First, the robot localizes itself by means of a Kalman-based algorithm that fuses robot odometry with the information coming from the phase of the signals of few reference RFID tags deployed along the shelves. Then, the objects on the shelves are localized using an algorithm that matches the phase of the signals from tagged objects collected along specific paths (suitably devised to decouple the estimation problem of the different tag coordinates) with a parametric electromagnetic model. A numerical analysis has been reported to show that the estimation error in the tag coordinates remains in the order of a few centimeters under several operating conditions of the system (e.g., for different values of the standard deviation of the measurement noise or under several parameter perturbations). Experimental tests in real scenarios assess the effectiveness of the system: the average position estimation error of the objects is about 10 cm in the case of cluttered metallic shelves but decreases up to a few centimeters in the case of stacked cartons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available