4.7 Article

Water-Soluble Reactive Copolymers Based on Cyclic N-Vinylamides with Succinimide Side Groups for Bioconjugation with Proteins

Journal

MACROMOLECULES
Volume 48, Issue 13, Pages 4256-4268

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.5b00947

Keywords

-

Funding

  1. China Scholarship Council
  2. Volkswagen Foundation
  3. Deutsche Forschungsgemeinschaft (DFG)
  4. Collaborative Research Center [SFB 985]

Ask authors/readers for more resources

Reversible addition fragmentation chain transfer (RAFT) copolymerizations of methacrylic acid N-hydroxysuccinimide ester and cyclic N-vinylamide derivatives (N-vinylpyrrolidone, N-vinylpiperidone, and N-vinylcaprolactam) were successfully performed with methyl 2-(ethoxycarbonothioylthio)propanoate as chain transfer agent (CTA). Effects of different reaction parameters, such as solvent type, temperature, and CTA-to-initiator (C/I) ratio, were studied to optimize the polymerization conditions in order to obtain copolymers with variable chemical composition, controlled molecular weight, and narrow polydispersity index (PDI). The solvent type has a high impact on the polymerization reaction, and a high C/I ratio decreases polydispersity as well as conversion. Increased steric hindrance through an enlarged lactam ring offsets the monomer reactivity. The controlled character of RAFT polymerization was evidenced by the low PDI of the copolymers and a linear relationship between conversion and molecular weight. Biohybrid nanogels were synthesized by direct coupling between reactive copolymers and enhanced green fluorescent protein (EGFP) or cellulase (CelA2_M2) at room temperature in a water-in-oil emulsion. The EGFP-conjugated nanogels were fluorescent, while the CelA2_M2 encapsulated in nanogels retained its catalytic activity, as demonstrated by the hydrolysis of 4-methylumbelliferyl-beta-D-cellobioside.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available