4.7 Article

State-of-the-art in force and tactile sensing for minimally invasive surgery

Journal

IEEE SENSORS JOURNAL
Volume 8, Issue 3-4, Pages 371-381

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSEN.2008.917481

Keywords

force feedback; force sensor; haptic perception; minimally invasive surgery (MIS); robotic surgery; tactile sensor

Ask authors/readers for more resources

Haptic perception plays a very important role in surgery. It enables the surgeon to feel organic tissue hardness, measure tissue properties, evaluate anatomical structures, and allows him/her to commit appropriate force control actions for safe tissue manipulation. However, in minimally invasive surgery, the surgeon's ability of perceiving valuable haptic information through surgical instruments is severely impaired. Performing the surgery without such sensory information could lead to increase of tissue trauma and vital organic tissue damage. In order to restore the surgeon's perceptual capability, methods of force and tactile sensing have been applied with attempts to develop instruments that can be used to detect tissue contact forces and generate haptic feedback to the surgeon. This paper reviews the state-of-the-art in force and tactile sensing technologies applied in minimally invasive surgery. Several sensing strategies including displacement-based, current-based, pressure-based, resistive-based, capacitive-based, piezoelectric-based, vibration-based, and optical-based sensing are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available