4.3 Article

Surface engineering of titanium with simvastatin-releasing polymer nanoparticles for enhanced osteogenic differentiation

Journal

MACROMOLECULAR RESEARCH
Volume 24, Issue 1, Pages 83-89

Publisher

SPRINGER
DOI: 10.1007/s13233-016-4007-7

Keywords

simvastatin; titanium; sustained release; osteogenic differentiation; surface immobilization

Funding

  1. National Research Foundation of Korea (NRF) - Korea government (MSIP) [2012R1A5A2051388]
  2. Korea Health Technology R&D project through the KHIDI - Ministry of Health & Welfare, Republic of Korea [HI14C0175]

Ask authors/readers for more resources

We describe a novel approach for surface engineering of titanium (Ti) with polymer nanoparticles that can sustainably release an osteogenic compound, simvastatin (SV). The SV-loaded nanoparticles (SV-GC-CA) were prepared by self-assembly of 5 beta-cholanic acid-conjugated glycol chitosan (GC-CA) in the presence of SV. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) analyses showed that the SV-GC-CA nanoparticles had a hydrodynamic diameter of 371.4 nm with a spherical shape. The surface engineering of Ti was performed by pre-treatment of Ti surface with polydopamine (PD) coatings, followed by immobilization of the SV-GC-CA nanoparticles. The immobilization of the SV-GC-CA nanoparticles onto PD-treated Ti surfaces could be achieved by a simple dipping method in an aqueous solution. The successful immobilization of the SV-GC-CA nanoparticles onto Ti surfaces was confirmed by field-emission scanning electron microscopy (FE-SEM), and the density of immobilized nanoparticles could be controlled. SV was sustainably released for up to 20 days, and the release rate was dependent on the loading amount of SV. The Ti substrate functionalized with SV-releasing nanoparticles significantly promoted alkaline phosphatase (ALP) activity of osteoblast-like cells (MC3T3-E1). The surface engineering approach described in this work has an applicability for various medical devices to generate surfaces with improved osteogenic potentials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available