4.7 Article

Enzymatic Polymerization of an Ibuprofen-Containing Monomer and Subsequent Drug Release

Journal

MACROMOLECULAR BIOSCIENCE
Volume 15, Issue 8, Pages 1115-1124

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/mabi.201500030

Keywords

biodegradable; drug delivery systems; enzymes; polyesters; renewable resources

Funding

  1. National Institutes of Health

Ask authors/readers for more resources

Novel ibuprofen-containing monomers comprising naturally occurring and biocompatible compounds were synthesized and subsequently polymerized via enzymatic methods. Through the use of a malic acid sugar backbone, ibuprofen was attached as a pendant group, and then subsequently polymerized with a linear aliphatic diol (1,3-propanediol, 1,5-pentanediol, or 1,8-octanediol) as comonomer using lipase B from Candida antarctica, a greener alternative to traditional metal catalysts. Polymer structures were elucidated by nuclear magnetic resonance and infrared spectroscopies, and thermal properties and molecular weights were determined. All polymers exhibited sustained ibuprofen release, with the longer chain, more hydrophobic diols exhibiting the slowest release over the 30 d study. Polymers were deemed cytocompatible using mouse fibroblasts, when evaluated at relevant therapeutic concentrations. Additionally, ibuprofen retained its chemical integrity throughout the polymerization and in vitro hydrolytic degradation processes. This methodology of enzymatic polymerization of a drug presents a more environmentally friendly synthesis and a novel approach to bioactive polymer conjugates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available