4.7 Article

A computational approach to nonparametric regression: bootstrapping CMARS method

Journal

MACHINE LEARNING
Volume 101, Issue 1-3, Pages 211-230

Publisher

SPRINGER
DOI: 10.1007/s10994-015-5502-3

Keywords

Bootstrapping regression; Conic multivariate adaptive regression splines; Fixed-X resampling; Random-X resampling; Wild bootstrap; Machine learning

Ask authors/readers for more resources

Bootstrapping is a computer-intensive statistical method which treats the data set as a population and draws samples from it with replacement. This resampling method has wide application areas especially in mathematically intractable problems. In this study, it is used to obtain the empirical distributions of the parameters to determine whether they are statistically significant or not in a special case of nonparametric regression, conic multivariate adaptive regression splines (CMARS), a statistical machine learning algorithm. CMARS is the modified version of the well-known nonparametric regression model, multivariate adaptive regression splines (MARS), which uses conic quadratic optimization. CMARS is at least as complex as MARS even though it performs better with respect to several criteria. To achieve a better performance of CMARS with a less complex model, three different bootstrapping regression methods, namely, random-X, fixed-X and wild bootstrap are applied on four data sets with different size and scale. Then, the performances of the models are compared using various criteria including accuracy, precision, complexity, stability, robustness and computational efficiency. The results imply that bootstrap methods give more precise parameter estimates although they are computationally inefficient and that among all, random-X resampling produces better models, particularly for medium size and scale data sets.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available