4.7 Article

Deployment Algorithms for UAV Airborne Networks Toward On-Demand Coverage

Journal

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS
Volume 36, Issue 9, Pages 2015-2031

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSAC.2018.2864376

Keywords

Unmanned aerial vehicle (UAV); airborne network; deployment algorithms; on-demand coverage; connectivity

Funding

  1. National Natural Science Foundation of China [61471376]

Ask authors/readers for more resources

Due to the flying nature of unmanned aerial vehicles (UAVs), it is very attractive to deploy UAVs as aerial base stations and construct airborne networks to provide service for on-ground users at temporary events (such as disaster relief, military operation, and so on). In the constructing of UAV airborne networks, a challenging problem is how to deploy multiple UAVs for on-demand coverage while at the same time maintaining the connectivity among UAVs. To solve this problem, we propose two algorithms: a centralized deployment algorithm and a distributed motion control algorithm. The first algorithm requires the positions of user equipments (UEs) on the ground and provides the optimal deployment result (i.e., the minimal number of UAVs and their respective positions) after a global computation. This algorithm is applicable to the scenario that requires a minimum number of UAVs to provide desirable service for already known on-ground UEs. Differently, the second algorithm requires no global information or computation, instead, it enables each UAV to autonomously control its motion, find the UEs and converge to on-demand coverage. This distributed algorithm is applicable to the scenario where using a given number of UAVs to cover UEs without UEs' specific position information. In both algorithms, the connectivity of the UAV network is maintained. Extensive simulations validate our proposed algorithms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available