4.7 Article

Optimized Backhaul Compression for Uplink Cloud Radio Access Network

Journal

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS
Volume 32, Issue 6, Pages 1295-1307

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSAC.2014.2328133

Keywords

Cloud radio access network; multicell processing; compress-and-forward; Wyner-Ziv compression; heterogeneous network; network MIMO; coordinated multipoint (CoMP)

Funding

  1. Huawei Technologies, Canada

Ask authors/readers for more resources

This paper studies the uplink of a cloud radio access network (C-RAN) where the cell sites are connected to a cloud-computing-based central processor (CP) with noiseless backhaul links with finite capacities. We employ a simple compress-and forward scheme in which the base stations (BSs) quantize the received signals and send the quantized signals to the CP using either distributed Wyner-Ziv coding or single-user compression. The CP first decodes the quantization codewords and then decodes the user messages as if the remote users and the cloud center form a virtual multiple-access channel (VMAC). This paper formulates the problem of optimizing the quantization noise levels for weighted sum rate maximization under a sum backhaul capacity constraint. We propose an alternating convex optimization approach to find a local optimum solution to the problem efficiently, and more importantly, to establish that setting the quantization noise levels to be proportional to the background noise levels is near optimal for sum-rate maximization when the signal-to-quantization-noise-ratio (SQNR) is high. In addition, with Wyner-Ziv coding, the approximate quantization noise level is shown to achieve the sum-capacity of the uplink C-RAN model to within a constant gap. With single-user compression, a similar constant-gap result is obtained under a diagonal dominant channel condition. These results lead to an efficient algorithm for allocating the backhaul capacities in C-RAN. The performance of the proposed scheme is evaluated for practical multicell and heterogeneous networks. It is shown that multicell processing with optimized quantization noise levels across the BSs can significantly improve the performance of wireless cellular networks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available