4.6 Article

A 100-m Range 10-Frame/s 340 x 96-Pixel Time-of-Flight Depth Sensor in 0.18-μm CMOS

Journal

IEEE JOURNAL OF SOLID-STATE CIRCUITS
Volume 48, Issue 2, Pages 559-572

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSSC.2012.2227607

Keywords

Avalanche photodiodes; depth sensor; laser radar; range imaging; rangefinder; single-photon avalanche diode (SPAD); single-photon detector; three-dimensional (3-D) imaging; time-of-flight (TOF) imaging

Ask authors/readers for more resources

This paper introduces a single-photon detection technique for time-of-flight distance ranging based on the temporal and spatial correlation of photons. A proof-of-concept prototype achieving depth imaging up to 100 meters with a resolution of 340 x 96 pixels at 10 frames/s was implemented. At the core of the system, a sensor chip comprising 32 macro-pixels based on an array of single-photon avalanche diodes featuring an optical fill factor of 70% was fabricated in a 0.18-mu m CMOS. The chip also comprises an array of 32 circuits capable of generating precise triggers upon correlation events as well as of sampling the number of photons involved in each correlation event, and an array of 32 12-b time-to-digital converters. Characterization of the TDC array led to -0.52 LSB and 0.73 LSB of differential and integral nonlinearities, respectively. Quantitative evaluation of the TOF sensor under strong solar background light, i.e., 80 klux, revealed a repeatability error better than 10 cm throughout the distance range of 100 m, thus leading to a relative precision of 0.1%. In the same condition, the relative nonlinearity error was 0.37%. In order to show the suitability of our approach in a real-world situation, experimental results in which the depth sensor was operated in a typical traffic scenario are also reported.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available