4.6 Article Proceedings Paper

A Wireless and Batteryless 10-Bit Implantable Blood Pressure Sensing Microsystem With Adaptive RF Powering for Real-Time Laboratory Mice Monitoring

Journal

IEEE JOURNAL OF SOLID-STATE CIRCUITS
Volume 44, Issue 12, Pages 3631-3644

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSSC.2009.2035551

Keywords

Adaptive powering; batteryless implant; blood pressure sensor; biomedical implant; implantable microsystem; low power design; RF powering; wireless implant

Ask authors/readers for more resources

An implantable real-time blood pressure monitoring microsystem for laboratory mice has been demonstrated. The system achieves a 10-bit blood pressure sensing resolution and can wirelessly transmit the pressure information to an external unit. The implantable device is operated in a batteryless manner, powered by an external RF power source. The received RF power level can be sensed and wirelessly transmitted along with blood pressure signal for feedback control of the external RF power. The microsystem employs an instrumented silicone cuff, wrapped around a blood vessel with a diameter of approximately 200 mu m, for blood pressure monitoring. The cuff is filled by low-viscosity silicone oil with an immersed MEMS capacitive pressure sensor and integrated electronic system to detect a down-scaled vessel blood pressure waveform with a scaling factor of approximately 0.1. The integrated electronic system, consisting of a capacitance-to-voltage converter, an 11-bit ADC, an adaptive RF powering system, an oscillator-based 433 MHz FSK transmitter and digital control circuitry, is fabricated in a 1.5 mu m CMOS process and dissipates a power of 300 mu W. The packaged microsystem weighs 130 milligram and achieves a capacitive sensing resolution of 75 aF over 1 kHz bandwidth, equivalent to a pressure sensing resolution of 1 mmHg inside an animal vessel, with a dynamic range of 60 dB. Untethered laboratory animal in vivo evaluation demonstrates that the microsystem can capture real-time blood pressure information with a high fidelity under an adaptive RF powering and wireless data telemetry condition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available