4.7 Article

Dynamic Spectrum Management: Complexity and Duality

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSTSP.2007.914876

Keywords

Complexity; duality; spectrum management; sum-rate maximization

Funding

  1. Hong Kong RGC Earmarked [CUHK418505, CUHK418406]
  2. NSF [DMS-0610037]
  3. USDOD ARMY [W911NF-05-1-0567]

Ask authors/readers for more resources

Consider a communication system whereby multiple users share a common frequency band and must choose their transmit power spectral densities dynamically in response to physical channel conditions. Due to co-channel interference, the achievable data rate of each user depends on not only the power spectral density of its own, but also those of others in the system. Given any channel condition and assuming Gaussian signaling, we consider the problem to jointly determine all users' power spectral densities so as to maximize a system-wide utility function (e.g., weighted sum-rate of all users), subject to individual power constraints. For the discretized version of this nonconvex problem, we characterize its computational complexity by establishing the NP-hardness under various practical settings, and identify subclasses of the problem that are solvable in polynomial time. Moreover, we consider the Lagrangian dual relaxation of this nonconvex problem. Using the Lyapunov theorem in functional analysis, we rigorously prove a result first discovered by Yu and Lui (2006) that there is a zero duality gap for the continuous (Lebesgue integral) formulation. Moreover, we show that the duality gap for the discrete formulation vanishes asymptotically as the size of discretization decreases to zero.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available