4.7 Article

Superconducting Nanowire Single-Photon Detectors for Quantum Information and Communications

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSTQE.2009.2034616

Keywords

Niobium nitride (NbN) superconducting films; quantum information and communications; single-photon detector; superconducting nanowire

Ask authors/readers for more resources

Superconducting nanowire single-photon detectors (SNSPDs or SSPD) are highly promising devices in the growing field of quantum information and communications technology. We have developed a practical SSPD system with our superconducting thin films and devices fabrication, optical coupling packaging, and cryogenic technology. The SSPD system consists of six-channel SSPD devices and a compact Gifford-McMahon (GM) cryocooler, and can operate continuously on 100 V ac power without the need for any cryogens. The SSPD devices were fabricated from high-quality niobium nitride (NbN) ultrathin films that were epitaxially grown on single-crystal MgO substrates. The packaged SSPD devices were temperature stabilized to 2.96 K +/- 10 mK. The system detection efficiency for an SSPD device with an area of 20 x 20 mu m(2) was found to be 2.6% and 4.5% at wavelengths of 1550 and 1310 nm, respectively, at a dark count rate of 100 Hz, and a jitter of 100 ps full-width at half maximum. We also performed ultrafast BB84 quantum key distribution (QKD) field testing and entanglement-based QKD experiments using these SSPD devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available