4.7 Article

Tabletop resonant infrared matrix-assisted pulsed laser evaporation of light-emitting organic thin films

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSTQE.2008.915625

Keywords

infrared matrix-assisted pulsed evaporation (IR-MAPLE); MAPLE; poly[2-methoxy-5-(2 '-ethylhexyloxy)-1,4-phenylene vinylene] (MEH-PPV); poly[2-methoxy-5-(2 '-ethylhexyloxy)-1,4-(1-cyanovinylene) phenylene] (MEH-CN-PPV); resonant infrared (RIR)-MAPLE

Ask authors/readers for more resources

Structural optimization of light-emitting polymer, or organic semiconductor, thin films deposited by tabletop 2.9 Pin resonant infrared matrix-assisted pulsed evaporation (RIR-MAPLE) is investigated. Surface morphology of poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-(l-cyanovinylene) phenylene] (MEH-CN-PPV) and poly [2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene] (MEH-PPV) films are analyzed using optical and atomic force microscopy. These films are deposited using different target-to-substrate distances, ambient base pressures, laser fluences, and substrate temperatures, and with different target compositions comprising tetrahydrofuran (THF), chlorobenzene, toluene, o-xylene, chloroform, phenol:THF, and phenol:water. The corresponding optical behavior and chemical structure of the deposited films is investigated with photoluminescence spectroscopy and Fourier transform infrared spectroscopy. The use of a novel RIR-MAPLE emulsion target recipe enables the successful incorporation of MEH-CN-PPV and MEH-PPV polymers into ice matrices, and an MEH-PPV thin film with near-featureless surface morphology and an unprecedented rms surface roughness of 0.292 nm is demonstrated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available