4.7 Article

Short pulse propagation in wavelength selective index-guided photonic crystal fiber coupler

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSTQE.2008.923161

Keywords

dispersion; finite element method; optical coupler; photonic crystal fiber (PCF); short pulse propagation

Ask authors/readers for more resources

Dual core photonic crystal fiber (PCF) couplers that support femtosecond (fs) pulses have been presented in this paper. The couplers are dispersion managed and relatively short. A vector finite-element-based model has been developed to precisely evaluate coupling coefficients and higher order dispersions for wavelength selective applications of these PCFs. Material dispersion of silica glass along with the waveguide dispersion has also been taken into account. Cladding has been designed innovatively to manage coupling length and dispersion. Dispersion demonstrates the wavelength region where it can support short duration pulses, and the propagation of 100 fs pulses has been shown at 1550 and 1310 nm wavelengths, respectively, incorporating the higher order dispersions and wavelength selective coupling behavior.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available