4.7 Article

Numerical Simulation and Forecasting of Water Level for Qinghai Lake Using Multi-Altimeter Data Between 2002 and 2012

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSTARS.2013.2291516

Keywords

Altimeter data; forecast; lake level; Qinghai Lake; simulation

Funding

  1. Director Innovation Foundation of the Center for Earth Observation and Digital Earth, Chinese Academy of Sciences [Y2ZZ17101B]
  2. Dragon-3 Cooperation Programme from both the European Space Agency and the Ministry of Science and Technology of China [10466]

Ask authors/readers for more resources

Satellite radar altimetry has effectively been used for monitoring the water level change in recent years. In this study, Qinghai Lake was taken as an example to simulate and forecast water level using the multi-altimeter data from Envisat/RA-2, Cryosat-2/Siral, and Jason-1/Poseidon-2. First, using the robust least square method and system bias correction algorithms, abnormal water levels and the system bias were eliminated, and an accurate lake-level time series was obtained. Then, singular spectrum analysis (SSA) algorithms were used to extract the effective fluctuation signal from the accurate lake-level time series, and the accuracy of the altimetry data was improved. Based on an analysis of SSA algorithms' characteristics, comparison of the SSA-extracted fluctuation signal, and in-situ gauge measurements of Qinghai Lake, the accurate lake-level time series was affected by white noise of zero-mean and 0.5-m variance and colored noise of 0.2202-0.2473-m mean and 0.252-0.2800-m root-mean-square difference. After eliminating the white noise, the accuracy of the altimeter data reached the decimeter level in inland lake monitoring. Next, the SSA-extracted fluctuation signal was decomposed into linear composition, periodic components, and a residual component, and a combined linear-periodic-residual model was established using simple regression, a trigonometric function, and autoregressive-moving-average models. Using the model, the water level change of Qinghai Lake was simulated and forecasted to 2 years, with its accuracy reaching the decimeter level. The experiences of this study can provide an effective reference for the other lakes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available