4.7 Article

GNSS-Derived Path Delay: An Approach to Compute the Wet Tropospheric Correction for Coastal Altimetry

Journal

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
Volume 7, Issue 3, Pages 596-600

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/LGRS.2010.2042425

Keywords

Microwave measurements; radar altimetry; satellite positioning system; seacoast; terrestrial atmosphere

Funding

  1. ESA-STSE [21201/08/I-LG]
  2. FCT [PDCTE/CTA/50388/2003]
  3. Fundação para a Ciência e a Tecnologia [PDCTE/CTA/50388/2003] Funding Source: FCT

Ask authors/readers for more resources

This letter presents an innovative method for computing the wet tropospheric correction for altimetry measurements in the coastal regions, where the measurements from the microwave radiometers (MWRs) onboard altimetric missions become invalid. The method, called Global Navigation Satellite System (GNSS)-derived Path Delay, gives an estimation of the correction, along with the associated mapping error, from the combination of independent zenith wet delay (ZWD) values obtained from the tropospheric delays derived at a network of coastal GNSS stations, from the MWR measurements acquired before land degradation, and from the European Centre for Medium-Range Weather Forecasts Deterministic Atmospheric Model. The wet tropospheric correction is estimated at each altimeter point with an invalid MWR value using a linear space-time objective analysis technique that takes into account the spatial and temporal variability of the ZWD field and the accuracy of each data set used. The method was applied in the South West European region for the whole Envisat data series, and the results are presented here. The uncertainty of the wet-delay estimates is below 1 cm, provided they are obtained for points at distances shorter than similar to 50 km from a GNSS station, and/or valid MWR measurements are available for the estimation. The method can be implemented globally and foster the use of satellite altimetry in coastal studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available