4.5 Article

Synthesis, characterization and thermoluminescence studies of Mn-doped ZnS nanoparticles

Journal

LUMINESCENCE
Volume 31, Issue 2, Pages 317-322

Publisher

WILEY
DOI: 10.1002/bio.2958

Keywords

thermoluminescence; ZnS:Mn; nanoparticles; activation energy; frequency; factor

Funding

  1. University Grants Commission, New Delhi, India

Ask authors/readers for more resources

ZnS:Mn nanoparticles were prepared by a chemical precipitation method and characterized by X-ray diffraction (XRD), field emission gun scanning electron microscope (FEGSEM), and high resolution transmission electron microscopy (HRTEM). Capping agent (mercaptoethanol) concentrations used were 0 M, 0.005 M, 0.01 M, 0.015 M, 0.025 M, 0.040 M, and 0.060 M, and resulted in nanoparticles sizes of 2.98 nm, 2.9 nm, 2.8 nm, 2.7 nm, 2.61 nm, 2.2 nm and 2.1 nm, respectively. The thermoluminescence (TL) glow curve was recorded by heating the sample exposed to UV-radiation, at a fixed heating rate 1 degrees C sec(-1). The TL intensity initially increased with temperature, attained a peak value I-m for a particular temperature, and then decreased with further increase in temperature. The peak TL intensity increased with decreasing nanoparticle size, whereas the temperature corresponding to the peak TL intensity decreased slightly with reducing nanocrystal size. As a consequence of increase in surface-to-volume ratio and increased carrier recombination rates, the TL intensity increased with decreasing nanoparticle size. It was found that, whereas activation energy slightly decreased with decreasing nanoparticle size, the frequency factor decreased significantly with reduction in nanoparticle size. Copyright (c) 2015 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available