4.7 Article

Application of Compressive Sensing to Sparse Channel Estimation

Journal

IEEE COMMUNICATIONS MAGAZINE
Volume 48, Issue 11, Pages 164-174

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/MCOM.2010.5621984

Keywords

-

Funding

  1. Office of Naval Research
  2. National Science Foundation

Ask authors/readers for more resources

Compressive sensing is a topic that has recently gained much attention in the applied mathematics and signal processing communities. It has been applied in various areas, such as imaging, radar, speech recognition, and data acquisition. In communications, compressive sensing is largely accepted for sparse channel estimation and its variants. In this article we highlight the fundamental concepts of compressive sensing and give an overview of its application to pilot aided channel estimation. We point out that a popular assumption - that multipath channels are sparse in their equivalent baseband representation - has pitfalls. There are over-complete dictionaries that lead to much sparser channel representations and better estimation performance. As a concrete example, we detail the application of compressive sensing to multi-carrier underwater acoustic communications, where the channel features sparse arrivals, each characterized by its distinct delay and Doppler scale factor. To work with practical systems, several modifications need to be made to the compressive sensing framework as the channel estimation error varies with how detailed the channel is modeled, and how data and pilot symbols are mixed in the signal design.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available