4.6 Article

Loggerhead turtle (Caretta caretta) movement off the coast of Taiwan: characterization of a hotspot in the East China Sea and investigation of mesoscale eddies

Journal

ICES JOURNAL OF MARINE SCIENCE
Volume 68, Issue 4, Pages 707-718

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/icesjms/fsq185

Keywords

Caretta caretta; East China Sea; habitat; loggerhead turtle; mesoscale eddies; movement; pelagic behaviour; satellite tags

Ask authors/readers for more resources

Satellite tags were attached to 34 non-reproductive loggerhead turtles (Caretta caretta) caught as bycatch in the Taiwanese coastal poundnet fishery from 2002 to 2008. Transmission durations ranged from 6 to 503 d (median 172 d), with 5860 d tracked in total. Horizontal track data were processed using the Bayesian state-space modelling to extract the most likely daily positions, taking into account ARGOS data quality and other forms of statistical error. A region of high occupancy in the East China Sea, covering 433 549 km(2) of coastal and pelagic area next to Taiwan, China, Japan, and South Korea, was characterized from the tracking data. Various attributes of this hotspot are described using satellite tracks and remotely sensed data. The tracks were merged with oceanographic data, emphasizing a new global dataset characterizing mesoscale eddies from satellite altimetry data. A proximity-probability approach coupled with odds ratio testing was used to infer orientation to eddy features. Comparisons against random points, simulated particle tracks, and drifter buoys were used to demonstrate turtle differential responses to eddies inside and outside the hotspot, depending on eddy features (i.e. cyclonic vs. anticyclonic, edges vs. centres). Turtles inside the hotspot utilize fewer strong cyclonic eddy edges than those outside.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available