4.6 Article

The application of satellite remote sensing for assessing productivity in relation to fisheries yields of the world's large marine ecosystems

Journal

ICES JOURNAL OF MARINE SCIENCE
Volume 68, Issue 4, Pages 667-676

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/icesjms/fsq177

Keywords

large marine ecosystems; primary productivity; satellite remote sensing

Ask authors/readers for more resources

In 1992, world leaders at the historical UN Conference on Environment and Development (UNCED) recognized that the exploitation of resources in coastal oceans was becoming increasingly unsustainable, resulting in an international effort to assess, recover, and manage goods and services of large marine ecosystems (LMEs). More than $3 billion in support to 110 economically developing nations have been dedicated to operationalizing a five-module approach supporting LME assessment and management practices. An important component of this effort focuses on the effects of climate change on fisheries biomass yields of LMEs, using satellite remote sensing and in situ sampling of key indicators of changing ecological conditions. Warming appears to be reducing primary productivity in the lower latitudes, where stratification of the water column has intensified. Fishery biomass yields in the Subpolar LMEs of the Northeast Atlantic are also increasing as zooplankton levels increase with warming. During the current period of climate warming, it is especially important for space agency programmes in Asia, Europe, and the United States to continue to provide satellite-borne radiometry data to the global networks of LME assessment scientists.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available