4.5 Article

Coupling of oxygen, nitrogen, and hydrocarbon species in the photochemistry of Titan's atmosphere

Journal

ICARUS
Volume 228, Issue -, Pages 324-346

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.icarus.2013.10.015

Keywords

Titan, atmosphere; Photochemistry; Atmospheres, chemistry; Atmospheres, composition

Funding

  1. Programme National de Planetologie (PNP) of the Institut National des Sciences de l'Univers (INSU)

Ask authors/readers for more resources

Analysis of recent detections of water by Herschel/HIFI-PACS and Cassini/CIRS suggest for a steep gradient of the water profile in the lower stratosphere of Titan's atmosphere (Cottini, V., Nixon, C.A., Jennings, D.E., Anderson, C.M., Gorius, N., Bjoraker, G.L., Coustenis, A., Teanby, N.A., Achterberg, R.K., Beezard, B., de Kok, R., Lellouch, E., Irwin, P.G.J., Flasar, F.M., Bampasidis, G. 120121 Icarus 220, 855-862; Moreno, R., Lellouch, E., Lara, L.M., Feuchtgruber, H., Rengel, M., Hartogh, P., Courtin, R. [2012]. Icarus 221,753-767). This result provides a good opportunity to better understand the origin of oxygen compounds. However, the current photochemical models use an incomplete oxygen chemical scheme. In the present work, we improve the photochemistry of oxygen and introduce in particular a coupling between hydrocarbon, oxygen and nitrogen chemistries. Through the use of several different scenarios, we show that some oxygen compound abundances are sensitive to the nature of oxygen atoms (Ok, OH and H2O) and the source of the flux (micrometeorites ablation or Enceladus' plume activity). Our model also predicts the presence of new and as yet undetected compounds such as NO (nitric oxide), HNO (nitrosyl hydride), HNCO (isocyanic acid) and N2O (nitrous oxide). Their future putative detection will give valuable constraints to discriminate between the different hypotheses for the nature and the source of oxygen compounds in the atmosphere of Titan. Through the use of a Monte Carlo-based uncertainty propagation study and global sensitivity analysis, we identify the key reactions that should be studied in priority to improve coupled photochemical models of Titan's atmosphere. (C) 2013 Published by Elsevier Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available