4.5 Article

Divergent evolution of Earth and Venus: Influence of degassing, tectonics, and magnetic fields

Journal

ICARUS
Volume 226, Issue 2, Pages 1447-1464

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.icarus.2013.07.025

Keywords

Earth; Venus; Atmospheres, Evolution; Magnetospheres

Funding

  1. NSF [EAR-1135382]
  2. Division Of Earth Sciences
  3. Directorate For Geosciences [1344538] Funding Source: National Science Foundation

Ask authors/readers for more resources

Knowledge of the earliest evolution of Earth and Venus is extremely limited, but it is obvious from their dramatic contrasts today that at some point in their evolution conditions on the two planets diverged. In this paper we develop a geophysical systems box model that simulates the flux of carbon through the mantle, atmosphere, ocean, and seafloor, and the degassing of water from the mantle. Volatile fluxes, including loss to space, are functions of local volatile concentration, degassing efficiency, tectonic plate speed, and magnetic field intensity. Numerical results are presented that demonstrate the equilibration to a steady state carbon cycle, where carbon and water are distributed among mantle, atmosphere, ocean, and crustal reservoirs, similar to present-day Earth. These stable models reach steady state after several hundred million years by maintaining a negative feedback between atmospheric temperature, carbon dioxide weathering, and surface tectonics. At the orbit of Venus, an otherwise similar model evolves to a runaway greenhouse with all volatiles in the atmosphere. The influence of magnetic field intensity on atmospheric escape is demonstrated in Venus models where either a strong magnetic field helps the atmosphere to retain about 60 bars of water vapor after 4.5 Gyr, or the lack of a magnetic field allows for the loss of all atmospheric water to space in about 1 Gyr. The relative influences of plate speed and degassing rate on the weathering rate and greenhouse stability are demonstrated, and a stable to runaway regime diagram is presented. In conclusion, we propose that a stable climate-tectonic-carbon cycle is part of a larger coupled geophysical system where a moderate surface climate provides a stabilizing feedback for maintaining surface tectonics, the thermal cooling of the deep interior, magnetic field generation, and the shielding of the atmosphere over billion year time scales. (C) 2013 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available