4.5 Article

Optical properties of Titan and early Earth haze laboratory analogs in the mid-visible

Journal

ICARUS
Volume 207, Issue 2, Pages 903-913

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.icarus.2009.12.015

Keywords

Titan; Spectroscopy; Experimental techniques; Photochemistry

Funding

  1. NASA [NNX07AV55G, NNX07AF190, NNX08AG93G, NNX09AE12G]
  2. National Science Foundation
  3. EPA
  4. NOAA
  5. NASA [101213, 118336, NNX09AE12G, NNX08AG93G] Funding Source: Federal RePORTER

Ask authors/readers for more resources

Scattering and absorption of sunlight by aerosols are integral to understanding the radiative balance of any planetary atmosphere covered in a haze, such as Titan and possibly the early Earth. One key optical parameter of an aerosol is its refractive index. We have simulated both Titan and early Earth organic haze aerosols in the laboratory and measured the real and imaginary portion of their refractive index at lambda = 532 nm using cavity ringdown aerosol extinction spectroscopy. This novel technique allows analysis on freely-floating particles minutes after formation. For our Titan analog particles, we find a real refractive index of n = 1.35 +/- 0.01 and an imaginary refractive index k = 0.023 +/- 0.007, and for the early Earth analog particles we find n = 1.81 +/- 0.02 and k = 0.055 +/- 0.020. The Titan analog refractive index has a smaller real and similar imaginary refractive index compared to most previous laboratory measurements of Titan analog films, including values from Khare et al. (Khare, B.N., Sagan, C., Arakawa, E.T., Suits, F., Callcott, TA., Williams, M.W. [1984]. Icarus 60, 127-137). These newly measured Titan analog values have implications for spacecraft retrievals of aerosol properties on Titan. The early Earth analog has a significantly higher real and imaginary refractive index than Titan analogs reported in the literature. These differences suggest that, for a given amount of aerosol, the early Earth analog would act as a stronger anti-greenhouse agent than the Titan analog. (C) 2010 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available