4.5 Article

Generalized counting constraint satisfaction problems with determinantal circuits

Journal

LINEAR ALGEBRA AND ITS APPLICATIONS
Volume 466, Issue -, Pages 357-381

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.laa.2014.09.050

Keywords

Counting complexity; Tensor network; Monoidal categories

Funding

  1. Defense Advanced Research Projects Agency [N66001-10-1-4040]
  2. Applied Research Laboratory's Exploratory and Foundational Research Program

Ask authors/readers for more resources

Generalized counting constraint satisfaction problems include Holant problems with planarity restrictions; polynomial-time algorithms for such problems include matchgates and matchcircuits, which are based on Pfaffians. In particular, they use gates which are expressible in terms of a vector of sub-Pfaffians of a skew-symmetric matrix. We introduce a new type of circuit based instead on determinants, with seemingly different expressive power. In these determinantal circuits, a gate is represented by the vector of all minors of an arbitrary matrix. Determinantal circuits permit a different class of gates. Applications of these circuits include proofs of theorems from algebraic graph theory including the Chung-Langlands formula for the number of rooted spanning forests of a graph and computing Tutte polynomials of certain matroids. They also give a strategy for simulating quantum circuits with closed timelike curves. Monoidal category theory provides a useful language for discussing such counting problems, turning combinatorial restrictions into categorical properties. We introduce the counting problem in monoidal categories and count-preserving functors as a way to study FP subclasses of problems in settings which are generally #P-hard. Using this machinery we show that, surprisingly, determinantal circuits can be simulated by Pfaffian circuits at quadratic cost. (C) 2014 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available