4.7 Article

Docosahexaenoic acid induces M2 macrophage polarization through peroxisome proliferator-activated receptor γ activation

Journal

LIFE SCIENCES
Volume 120, Issue -, Pages 39-47

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.lfs.2014.10.014

Keywords

Docosahexaenoic acid; Efferocytosis; Resolution of inflammation; Omega-3 polyunsaturated fatty add; Peroxisome proliferator-activated receptor gamma

Ask authors/readers for more resources

Aims: Impaired resolution of acute inflammation results in development of chronic inflammatory disorders such as atherosclerosis, asthma and arthritis. Clearance of apoptotic neutrophils by M2 macrophages, the process termed efferocytosis, is critical for complete resolution of inflammation as it prevents secondary necrosis caused by disgorgement of toxic contents from apoptotic cells in the inflamed site. In the present study, we investigated the effect of docosahexaenoic acid (DHA) on efferocytosis. Main methods: To determine the effect of DHA on efferocytosis, murine macrophage-like RAW264.7 cells were co-incubated with apoptotic Jurkat T cells, and efferocytosis was assessed by flow cytometry. The expression and production of M1 and M2 markers were determined by RT-PCR, ELISA and flow cytometry. To demonstrate the involvement of peroxisome proliferator-activated receptor 'y (PPARy) in DHA-mediated effects, siRNA against PPARy was utilized. The expression of PPAR'y was examined by semiquantitative reverse-transcription polymerase chain reaction (RT-PCR), Western blot analysis and immunocytochemistry. The [TAR)/ activation was measured by the electrophilic gel shift assay. Key findings: DHA enhanced the efferocytic ability of RAW264.7 cells, and induced their M2 polarization. Notably, knockdown of PPARy abolished the stimulatory effect of DHA on M2 polarization as well as efferocytosis. Furthermore, lipopcilysaccharide-induced production of pro-inflammatory cytoldnes was significantly inhibited by DHA, suggesting that DI-IA alters the macrophage phenotype in favor of M2 while it suppresses M1 polarization. Significance: These findings indicate that DHA can promote resolution of inflammation by facilitating efferocytosis through M2 macrophage polarization. Therefore, DHA may have a therapeutic potential in the management of inflammatory diseases which are related to impaired resolution of inflammation. 0 2014 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available