4.7 Article

Measurement Error Corrected Sodium and Potassium Intake Estimation Using 24-Hour Urinary Excretion

Journal

HYPERTENSION
Volume 63, Issue 2, Pages 238-+

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/HYPERTENSIONAHA.113.02218

Keywords

bias (epidemiology); biological markers; potassium; sodium

Funding

  1. National Cancer Institute [CA119171, CA53996]
  2. National Heart, Lung, and Blood Institute, National Institutes of Health, US Department of Health and Human Services [HHSN268201100046C]

Ask authors/readers for more resources

Epidemiological studies of the association of sodium and potassium intake with cardiovascular disease risk have almost exclusively relied on self-reported dietary data. Here, 24-hour urinary excretion assessments are used to correct the dietary self-report data for measurement error under the assumption that 24-hour urine recovery provides a biomarker that differs from usual intake according to a classical measurement model. Under this assumption, dietary self-reports underestimate sodium by 0% to 15%, overestimate potassium by 8% to 15%, and underestimate sodium/ potassium ratio by approximate to 20% using food frequency questionnaires, 4-day food records, or three 24-hour dietary recalls in Women's Health Initiative studies. Calibration equations are developed by linear regression of log-transformed 24-hour urine assessments on corresponding log-transformed self-report assessments and several study subject characteristics. For each self-report method, the calibration equations turned out to depend on race and age and strongly on body mass index. After adjustment for temporal variation, calibration equations using food records or recalls explained 45% to 50% of the variation in (log-transformed) 24-hour urine assessments for sodium, 60% to 70% of the variation for potassium, and 55% to 60% of the variation for sodium/potassium ratio. These equations may be suitable for use in epidemiological disease association studies among postmenopausal women. The corresponding signals from food frequency questionnaire data were weak, but calibration equations for the ratios of sodium and potassium/total energy explained approximate to 35%, 50%, and 45% of log-biomarker variation for sodium, potassium, and their ratio, respectively, after the adjustment for temporal biomarker variation and may be suitable for cautious use in epidemiological studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available