4.7 Article

Nitric Oxide Production and Endothelium-Dependent Vasorelaxation Ameliorated by N1-Methylnicotinamide in Human Blood Vessels

Journal

HYPERTENSION
Volume 59, Issue 4, Pages 825-U169

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/HYPERTENSIONAHA.111.183210

Keywords

N-1-methylnicotinamide; endothelial cells; nitric oxide; superoxide; endothelial nitric oxide synthase; oxidized low-density lipoprotein; flow-mediated dilation

Funding

  1. Ministry of Science and Higher Education/the National Science Centre, Poland
  2. Foundation for Polish Science

Ask authors/readers for more resources

N-1-methylnicotinamide (MNA(+)) has until recently been thought to be a biologically inactive product of nicotinamide metabolism in the pyridine nucleotides pathway. However, the latest observations imply that MNA(+) may exert antithrombotic and anti-inflammatory effects through direct action on the endothelium. We examined both in vivo and in vitro whether the compound might induce vasorelaxation in human blood vessels through the improvement of nitric oxide (NO) bioavailability and a reduction of oxidative stress mediated by endothelial NO synthase (eNOS) function. MNA(+) treatment (100 mg/m(2) orally) in healthy normocholesterolemic and hypercholesterolemic subjects increased the L-arginine (L-NMMA)-inhibitable flow-mediated dilation (FMD) of brachial artery responses that also positively correlated with MNA(+) plasma concentrations (r=0.73 for normocholesterolemics and r=0.78 for hypercholesterolemics; P<0.0001). MNA(+) increased FMD at the same concentration range at which it enhanced NO release from cultured human endothelial cells after stimulation with either the receptor-dependent (acetylcholine) or the receptor-independent endothelial NO synthase agonists (calcium ionophore A23187). MNA(+) restored the endothelial NO synthase agonist-stimulated NO release after the exposure of the cells to oxidized low-density lipoprotein. This effect was also associated with the normalization of the [NO]/[superoxide] balance in the endothelial cells. Taken together, the increased NO bioavailability in the endothelium contributes to the vasorelaxating properties of MNA(+). Targeting eNOS with MNA(+) might be therapeutically relevant for functional disorders of the endothelium, such as hypercholesterolemia and atherosclerosis. (Hypertension. 2012;59:825-832.). Online Data Supplement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available