4.7 Article

Blood Oxygen Level-Dependent Magnetic Resonance Imaging Identifies Cortical Hypoxia in Severe Renovascular Disease

Journal

HYPERTENSION
Volume 58, Issue 6, Pages 1066-U194

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/HYPERTENSIONAHA.111.171405

Keywords

renal artery stenosis; MRI; hypoxia; hypertension; renal physiology

Funding

  1. National Heart, Lung, and Blood Institute [P01HL085307]
  2. National Institutes of Health/National Center for Research Resources [UL1 RR024150]

Ask authors/readers for more resources

Atherosclerotic renal artery stenosis has a range of manifestations depending on the severity of vascular occlusion. The aim of this study was to examine whether exceeding the limits of adaptation to reduced blood flow ultimately leads to tissue hypoxia, as determined by blood oxygen level dependent MRI. We compared 3 groups of hypertensive patients, 24 with essential hypertension, 13 with moderate (Doppler velocities 200-384 cm/s), and 17 with severe atherosclerotic renal artery stenosis (ARAS; velocities >384 cm/s and loss of functional renal tissue). Cortical and medullary blood flows and volumes were determined by multidetector computed tomography. Poststenotic kidney size and blood flow were reduced with ARAS, and tissue perfusion fell in the most severe lesions. Tissue medullary deoxyhemoglobin, as reflected by R2* values, was higher as compared with the cortex for all of the groups and did not differ between subjects with renal artery lesions and essential hypertension. By contrast, cortical R2* levels were elevated for severe ARAS (21.6 +/- 9.4 per second) as compared with either essential hypertension (17.8 +/- 2.3 per second; P<0.01) or moderate ARAS (15.7 +/- 2.1 per second; P<0.01). Changes in medullary R2* after furosemide administration tended to be blunted in severe ARAS as compared with unaffected (contralateral) kidneys. These results demonstrate that severe vascular occlusion overwhelms the capacity of the kidney to adapt to reduced blood flow, manifest as overt cortical hypoxia as measured by blood oxygen level-dependent MRI. The level of cortical hypoxia is out of proportion to the medulla and may provide a marker to identify irreversible parenchymal injury. (Hypertension. 2011;58:1066-1072.). Online Data Supplement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available