4.7 Article

Key Role of 15-Lipoxygenase/15-Hydroxyeicosatetraenoic Acid in Pulmonary Vascular Remodeling and Vascular Angiogenesis Associated With Hypoxic Pulmonary Hypertension

Journal

HYPERTENSION
Volume 58, Issue 4, Pages 679-U348

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/HYPERTENSIONAHA.111.171561

Keywords

pulmonary hypertension; pulmonary vascular remodeling; angiogenesis; 15-hydroxyeicosatetraenoic acid; ROCK

Funding

  1. National Natural Science Foundation of China [331071007]
  2. Education Department of Heilongjiang Provence [NO 1151zgd11]
  3. Specific Science Foundation of Harbin [2006RFXXS029]

Ask authors/readers for more resources

We have found that 15-hydroxyeicosatetraenoic acid (15-HETE) induced by hypoxia was an important mediator in the regulation of hypoxic pulmonary hypertension, including the pulmonary vasoconstriction and remodeling. However, the underlying mechanisms of the remodeling induced by 15-HETE are poorly understood. In this study, we performed immunohistochemistry, pulmonary artery endothelial cells migration and tube formation, pulmonary artery smooth muscle cells bromodeoxyuridine incorporation, and cell cycle analysis to determine the role of 15-HETE in hypoxia-induced pulmonary vascular remodeling. We found that hypoxia induced pulmonary vascular medial hypertrophy and intimal endothelial cells migration and angiogenesis, which were mediated by 15-HETE. Moreover, 15-HETE regulated the cell cycle progression and made more smooth muscle cells from the G(0)/G(1) phase to the G(2)/M+S phase and enhanced the microtubule formation in cell nucleus. In addition, we found that the Rho-kinase pathway was involved in 15-HETE-induced endothelial cells tube formation and migration and smooth muscle cell proliferation. Together, these results show that 15-HETE mediates hypoxia-induced pulmonary vascular remodeling and stimulates angiogenesis via the Rho-kinase pathway. (Hypertension. 2011;58:679-688.)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available