4.7 Article

Vascular Smooth Muscle Cell Differentiation to an Osteogenic Phenotype Involves TRPM7 Modulation by Magnesium

Journal

HYPERTENSION
Volume 56, Issue 3, Pages 453-U243

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/HYPERTENSIONAHA.110.152058

Keywords

calcification; vessels; hypertension; chronic kidney disease; osteocalcin; osteopontin; BMP

Funding

  1. Canadian Institute of Health Research (CIHR)
  2. Heart and Stroke Foundation of Canada
  3. Canada Research Chair/Canadian Foundation for Innovation award
  4. KRESCENT

Ask authors/readers for more resources

Arterial calcification, common in vascular diseases, involves vascular smooth muscle cell (VSMC) transformation to an osteoblast phenotype. Clinical studies suggest that magnesium may prevent this, but mechanisms are unclear. We assessed whether increasing magnesium levels reduce VSMC calcification and differentiation and questioned the role of the Mg2+ transporter, transient receptor potential melastatin (TRPM)7 cation channels in this process. Rat VSMCs were exposed to calcification medium in the absence and presence of magnesium (2.0 to 3.0 mmol/L) or 2-aminoethoxy- diphenylborate (2-APB) (TRPM7 inhibitor). VSMCs from mice with genetically low (MgL) or high-normal (MgH) [Mg2+](i) were also studied. Calcification was assessed by von Kossa staining. Expression of osteocalcin, osteopontin, bone morphogenetic protein (BMP)-2, BMP-4, BMP-7, and matrix Gla protein and activity of TRPM7 (cytosol: membrane translocation) were determined by immunoblotting. Calcification medium induced osteogenic differentiation, reduced matrix Gla protein content, and increased expression of the sodium-dependent cotransporter Pit-1. Magnesium prevented calcification and decreased osteocalcin expression and BMP-2 activity and increased expression of calcification inhibitors, osteopontin and matrix Gla protein. TRPM 7 activation was decreased by calcification medium, an effect reversed by magnesium. 2-APB recapitulated the VSMC osteoblastic phenotype in VSMCs. Osteocalcin was increased by calcification medium in VSMCs and intact vessels from MgL but not MgH, whereas osteopontin was increased in MgH, but not in MgL mice. Magnesium negatively regulates vascular calcification and osteogenic differentiation through increased/restored TRPM7 activity and increased expression of anticalcification proteins, including osteopontin, BMP-7, and matrix Gla protein. New molecular insights are provided whereby magnesium could protect against VSMC calcification. (Hypertension. 2010;56:453-462.)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available