4.6 Article

Sensitivity of snowmelt hydrology in Marmot Creek, Alberta, to forest cover disturbance

Journal

HYDROLOGICAL PROCESSES
Volume 26, Issue 12, Pages 1892-1905

Publisher

WILEY-BLACKWELL
DOI: 10.1002/hyp.9248

Keywords

forest; snow; Canadian Rocky Mountains; pine beetle; fire; clear-cutting

Funding

  1. Alberta Sustainable Resource Development
  2. Canadian Foundation for Climate and Atmospheric Sciences through the IP3 Cold Regions Hydrology Network
  3. Natural Sciences and Engineering Research Council of Canada
  4. Alexander Graham Bell Scholarships
  5. Canada Research Chairs programme
  6. Biogeoscience Institute, University of Calgary

Ask authors/readers for more resources

A model including slope effects on snow redistribution, interception and energetics was developed using the Cold Regions Hydrological Model platform, parameterized with minimal calibration and manipulated to simulate the impacts of forest disturbance on mountain hydrology. A total of 40 forest disturbance scenarios were compared with the current land cover for four simulation years. Disturbance scenarios ranged from the impact of pine beetle kill of lodgepole pine to clear-cutting of north- or south-facing slopes, forest fire and salvage logging. Pine beetle impacts were small in all cases with increases in snowmelt volume of less than 10% and streamflow volume of less than 2%. This small impact is attributed to the low and relatively dry elevations of lodgepole pine forests in the basin. Forest disturbances due to fire and clear-cutting affected much larger areas and higher elevations of the basin and were generally more than twice as effective as pine beetle in increasing snowmelt or streamflow. For complete forest cover removal by burning and salvage logging, a 45% increase in snowmelt volume was simulated; however, this only translated into a 5% increase in spring and summer streamflow volume. Forest burning with the retention of standing burned trunks was the most effective forest cover treatment for increasing streamflow (up to 8%) because of its minimizing of winter snow sublimation losses from interception and blowing snow. However, increases in streamflow volumes were almost entirely due to reductions in intercepted snow sublimation with decreasing canopy coverage. Peak daily streamflow discharges responded more strongly to forest cover disturbance than did seasonal streamflow volumes, with increases of almost 25% in peak streamflow from the removal of forest canopy by fire and the retention of standing burned trunks. Peak flow was most effectively increased by forest removal on south-facing slopes and level sites. Copyright (C) 2012 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available