4.6 Article Proceedings Paper

A comparison of forest and moorland stream microclimate, heat exchanges and thermal dynamics

Journal

HYDROLOGICAL PROCESSES
Volume 22, Issue 7, Pages 919-940

Publisher

WILEY-BLACKWELL
DOI: 10.1002/hyp.7003

Keywords

water temperature; riverbed; thermal regime; energy balance; heat budget; hydrometeorology; riparian woodland; Cairngorms; Scotland

Ask authors/readers for more resources

Although the importance of riparian forest in moderating stream temperature variability is recognized, most previous research focuses on conifer harvesting effects and summer maximum temperature with highly variable findings. This article compares stream temperature, microclimate and heat exchange dynamics between semi-natural forest and moorland (no trees) reaches in the Scottish Cairngorms over two calendar years to provide a longer-term perspective. Mean daily water column temperature is warmer for moorland than forest in late winter-early spring, but cooler in summer. Daily water column temperature range is greater for moorland than forest. Streambed temperature dynamics are markedly different between reaches, reflecting contrasting groundwater-surface water (GW-SW) interactions. Mean, minimum and maximum daily air temperature is cooler, humidity is lower, and wind speed is Much higher for moorland than forest on average. Net radiation is the dominant heat sink in autumn-winter and major heat source in spring-summer for moorland and summer for forest. Net radiation is greater in summer and lower in winter for moorland than forest. Sensible heat is an energy source in autumn-winter and sink in spring-summer, with loss (gain) greater in Summer (winter) for moorland than forest. Latent heat is predominantly a sink for both reaches, with magnitude and variability higher for moorland than forest. Streambed heat flux is much smaller than fluxes at the air-water interface, with moorland and forest illustrating seasonal and between-reach differences attributable to different GW-SW interactions. Seasonal patterns in stream energy budget partitioning are illustrated schematically. To our knowledge, this is the first such study of mixed woodland, which generates notably different results to work on coniferous forest. This research provides a process basis to model stream thermal impact of changes in forest practice, and so inform decision making by land and water resource managers. Copyright (C) 2008 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available