4.5 Article

Permafrost degradation and subsurface-flow changes caused by surface warming trends

Journal

HYDROGEOLOGY JOURNAL
Volume 21, Issue 1, Pages 271-280

Publisher

SPRINGER
DOI: 10.1007/s10040-012-0938-z

Keywords

Permafrost hydrogeology; Climate change; Multiphase flow; Heat transport; Numerical modelling

Funding

  1. Swedish Research Council (VR) [2007-8393]

Ask authors/readers for more resources

Change dynamics of permafrost thaw, and associated changes in subsurface flow and seepage into surface water, are analysed for different warming trends in soil temperature at the ground surface with a three-phase two-component flow system coupled to heat transport. Changes in annual, seasonal and extreme flows are analysed for three warming-temperature trends, representing simplified climate-change scenarios. The results support previous studies of reduced temporal variability of groundwater flow across all investigated trends. Decreased intra-annual flow variability may thus serve as an early indicator of permafrost degradation before longer-term changes in mean flows are notable. This is advantageous since hydrological data are considerably easier to obtain, may be available in longer time series, and generally reflect larger-scale conditions than direct permafrost observations. The results further show that permafrost degradation first leads to increasing water discharge, which then decreases as the permafrost degradation progresses further to total thaw. The most pronounced changes occur for minimum annual flows. The configuration considered represents subsurface discharge from a generic heterogeneous soil-type domain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available