4.5 Article

Parameter estimation based on vertical heat transport in the surficial zone

Journal

HYDROGEOLOGY JOURNAL
Volume 18, Issue 4, Pages 931-943

Publisher

SPRINGER
DOI: 10.1007/s10040-009-0557-5

Keywords

Heat transport; Temperature measurements; Groundwater recharge; Sensitivity analyses; Inverse modelling

Funding

  1. Fund for Scientific Research-Flanders (Belgium)

Ask authors/readers for more resources

Measured groundwater temperatures in the surficial zone are dependent on the properties of porous media and vertical flow velocity. Sensitivity analyses, collinear diagnostics and an inverse numerical solution to the one-dimensional heat-transport equation are used to determine which parameters can be estimated from temperature measurements in the surficial zone. This is done for heat transport in the saturated zone considering a constant vertical flow velocity. The use of temperature profiles, temperature time-series and temperature envelopes are considered. There is an important difference between a conduction and a convection dominated system. Sensitivity analysis shows that temperature measurements are sensitive to effective thermal conductivity and heat capacity and are insensitive to effective porosity and thermal dispersivity. In a conduction dominated system, temperature is also insensitive for vertical velocity. Collinear diagnostics show that in a conduction dominated system, only the combination of heat capacity and effective thermal conductivity, the thermal diffusivity, can be derived. In a convection dominated system, both the vertical velocity and the effective thermal conductivity can, theoretically, be derived.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available