4.6 Article

Phytoplankton biomass is mainly controlled by hydrology and phosphorus concentrations in tropical hydroelectric reservoirs

Journal

HYDROBIOLOGIA
Volume 693, Issue 1, Pages 13-28

Publisher

SPRINGER
DOI: 10.1007/s10750-012-1083-3

Keywords

Cyanobacteria; Nitrogen-fixing; Nutrients; Phytoplankton limitation; Water residence time; Zooplankton grazing

Funding

  1. FURNAS Centrais Eletricas S.A
  2. CAPES (Foundation for the Coordination of Higher Education and Graduate Training)
  3. CNPQ (Brazilian National Research Council)

Ask authors/readers for more resources

Phytoplankton is widely recognized as being regulated mainly by resources (nutrients and light) and predation by higher trophic levels. In reservoirs, these controls also can be modulated by hydrology, for example through the influence of flow pulses generated by the operation of the dam. In this study, we tested the influence of light, nutrients, and zooplankton grazing pressure, and also hydrology (as water residence time) on the phytoplankton biomass in eight tropical hydroelectric reservoirs, which differ in size, morphometry, location, trophic state, and water residence time. Our hypothesis was that, as these reservoirs are used for hydroelectric purposes, the control that would otherwise be exerted on phytoplankton biomass primarily by resource availability and grazing will also be modulated by hydrology. Low phytoplankton biomass (range of system medians = 12-299 mu g C l(-1)) occurred in most systems, except for one highly eutrophic reservoir (median = 1331 mu g C l(-1)). Our data showed that phosphorus was more often likely to be the limiting nutrient in these systems, as assessed through nutrient limitation indexes (nitrogen and phosphorus), based on concentrations and ratios. For most reservoirs, excluding the eutrophic system with high cyanobacteria biomass, seasonal water residence time was the variable that best explained phytoplankton variation among the several environmental variables analyzed in this study (P < 0.0001; adjusted r (2) = 0.38). Hydrology was an important and additional factor modulating phytoplankton in these tropical reservoirs, directly removing phytoplankton populations and their potential zooplankton grazers by washout, and also affecting nutrient availability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available