4.6 Article

The requirement for accurate diet-tissue discrimination factors for interpreting stable isotopes in sharks

Journal

HYDROBIOLOGIA
Volume 654, Issue 1, Pages 1-5

Publisher

SPRINGER
DOI: 10.1007/s10750-010-0361-1

Keywords

Stable isotopes; Elasmobranch; Shark; Diet-tissue discrimination factor; Fractionation; Mixing model; Trophic position

Ask authors/readers for more resources

Stable isotopes of nitrogen and carbon (delta(15)N and delta(13)C) provide an important tool to examine diet, trophic position and movement/migration of both aquatic and terrestrial animals. Over the past 10 years, there have been repeated calls to tighten up basic assumptions when applying stable isotopes, one of the most important being the application of accurate, species-specific diet-tissue discrimination factors (DTDFs). Taxa- or species-specific DTDFs are required for (i) predicting dietary sources to a consumer using stable isotope mixing models and (ii) for estimating trophic position relative to primary consumers or known base species. Logan & Lutcavage (2010) recently presented data on stable isotope dynamics in elasmobranch fishes and concluded that DTDFs for teleost fish were suitable for elasmobranch fish, endorsing the generally applied value of 3.4aEuro degrees. When considering (i) a recent study which found that DTDFs were lower for large sharks than teleost fish (Hussey et al., 2010) and (ii) that the Logan and Lutcavage study did not experimentally address the issue of DTDFs, we would argue that this conclusion is misleading. We demonstrate this point by estimating the proportion of prey items of a captive shark with a known diet history by modelling the delta(15)N values of the shark and its prey. The often repeated implication of inaccurate DTDFs is clear, with model results highly variable depending on the selected DTDF. In addition, model results for the standard teleost DTDF of 3.4aEuro degrees provided erroneous estimates of prey consumption. The suggestion that DTDFs for teleost fish are suitable for elasmobranchs may mislead investigators to choose DTDFs which are likely not applicable to their study species. Caution is therefore warranted in advocating this approach. Continued experimental work to examine stable isotopes in sharks is required and recommendations are made.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available