3.9 Article

Thermodynamic study on a new transcritical CO2 ejector expansion refrigeration system with two-stage evaporation and vapor feedback

Journal

HVAC&R RESEARCH
Volume 20, Issue 6, Pages 655-664

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/10789669.2014.929422

Keywords

-

Funding

  1. National Natural Science Foundation of China [51076120]

Ask authors/readers for more resources

By the stability analysis of the basic transcritical CO2 ejector expansion refrigeration cycle (EERC), the paper proposed a new system which introduces another evaporator downstream the ejector to increase the gas quality into the separator and a vapor feedback valve to decrease the exceed gas into the compressor. The two new components stand for two different cycles: two-stage evaporation cycle and vapor feedback cycle. The theoretical analysis of the new system is carried out based on the first and second laws of thermodynamics to show the effect of the parameters on the system performance, such as entrainment ratio, high-side pressure, outlet temperature of gas cooler, etc. The results by the first law show that, compared with basic EERC the new system can be used in wider range of working conditions, and the COP of the two-stage evaporation cycle is 28.6% higher and the vapor feedback cycle is lower slightly. By exergy analysis at optimum high-side pressure, it is found that the exergy destruction of ejector is the greatest part. The simulation results also give the working ranges of the two cycles, which can help to analyze the system control. Hence, the improvement in the system is a promising method to reduce the restrain in basic EERC system but more study is still needed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available