4.7 Article

Affinity maturation of T-cell receptor-like antibodies for Wilms tumor 1 peptide greatly enhances therapeutic potential

Journal

LEUKEMIA
Volume 29, Issue 11, Pages 2238-2247

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/leu.2015.125

Keywords

-

Funding

  1. NIH Cancer Center Support Grant [2 P30 CA008748-48]
  2. Katie Find a Cure Fund, Cycle for Survival and Robert Steel Foundation

Ask authors/readers for more resources

WT1(126) (RMFPNAPYL) is a human leukocyte antigen-A2 (HLA-A2)-restricted peptide derived from Wilms tumor protein 1 (WT1), which is widely expressed in a broad spectrum of leukemias, lymphomas and solid tumors. A novel T-cell-receptor (TCR)-like single-chain variable fragment (scFv) antibody specific for the T-cell epitope consisting of the WT1/HLA-A2 complex was isolated from a human scFv phage library. This scFv was affinity-matured by mutagenesis combined with yeast display and structurally analyzed using a homology model. This monovalent scFv showed a 100-fold affinity improvement (dissociation constant (K-D) = 3 nM) and exquisite specificity towards its targeted epitope or HLA-A2(+)/WT1(+) tumor cells. Bivalent scFv-huIgG1-Fc fusion protein demonstrated an even higher avidity (K-D = 2 pM) binding to the T-cell epitope and to tumor targets and was capable of mediating antibody-dependent cell-mediated cytotoxicity or tumor lysis by chimeric antigen receptor-expressing human T- or NK-92-MI-transfected cells. This antibody demonstrated specific and potent cytotoxicity in vivo towards WT1-positive leukemia xenograft that was HLA-A2 restricted. In summary, T-cell epitopes can provide novel targets for antibody-based therapeutics. By combining phage and yeast displays and scFv-Fc fusion platforms, a strategy for developing high-affinity TCR-like antibodies could be rapidly explored for potential clinical development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available