4.7 Article

Fibromuscular differentiation in deeply infiltrating endometriosis is a reaction of resident fibroblasts to the presence of ectopic endometrium

Journal

HUMAN REPRODUCTION
Volume 23, Issue 12, Pages 2692-2700

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/humrep/den153

Keywords

-

Ask authors/readers for more resources

In this study, we characterized the fibromuscular (FM) tissue, typical of deeply infiltrating endometriosis, investigated which cells are responsible for the FM reaction and evaluated whether transforming growth factor-beta (TGF-beta) signaling is involved in this process. FM differentiation and TGF-beta signaling were assessed in deeply infiltrating endometriosis lesions (n = 20) and a nude mouse model of endometriosis 1, 2, 3 and 4 weeks post-transplantation. The FM reaction was evaluated by immunohistochemistry using different markers of FM and smooth muscle cell differentiation (vimentin, desmin, alpha-smooth muscle actin, smooth muscle myosin heavy chain). TGF-beta signaling was assessed by immunostaining for its receptors and phosphorylated Smad. Deeply infiltrating endometriosis lesions contain myofibroblast-like cells that express multiple markers of FM differentiation. Expression of TGF-beta receptors and phospho-Smad was more pronounced in the endometrial component of the lesions than in the FM component. In the nude mouse model, alpha-smooth muscle actin expression was observed in murine fibroblasts surrounding the lesion, but not in human endometrial stroma. FM differentiation in deeply infiltrating endometriosis is the result of a reaction of the local environment to the presence of ectopic endometrium. It shares characteristics with pathological wound healing, but cannot be explained by TGF-beta signaling alone.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available