4.4 Article

Clinicopathologic significance of mitotic arrest defective protein 2 overexpression in hepatocellular carcinoma

Journal

HUMAN PATHOLOGY
Volume 39, Issue 12, Pages 1827-1834

Publisher

W B SAUNDERS CO-ELSEVIER INC
DOI: 10.1016/j.humpath.2008.06.003

Keywords

MAD2; Hepatocellular carcinoma; Dysplastic nodules; Prognosis

Categories

Ask authors/readers for more resources

Mitotic arrest defective protein 2 (MAD2) gene plays a central role in the mitotic checkpoint. Elevated MAD2 expression was observed in a number of human malignancies; its role in the development of hepatocellular carcinoma is still not understood and is controversial. The purpose of this study was to investigate the clinicopathologic significance of MAD2 expression in hepatocellular carcinoma. The MAD2 protein and its messenger RNA levels were measured in hepatocellular carcinomas, high-grade dysplastic nodules, and their paired nontumorous liver tissues by quantitative real-time polymerase chain reaction, Western blot, and immunohistiochemistry. The results showed that MAD2 at both messenger RNA and protein levels was overexpressed in 8 of 9 high-grade dysplastic nodules and in 51 of 58 hepatocellular carcinomas, including 12 of 14 unifocal small hepatocellular carcinomas. There was a tendency for MAD2 expression to increase in the process of this multistep carcinogenesis. A significantly high tumor MAD2 immunostaining was associated with the progression of histologic grade and the overall low survival. In conclusion, MAD2 is overexpressed frequently in hepatocellular carcinoma, including high-grade dysplastic nodules and early-stage small hepatocellular carcinoma, indicating that overexpression of MAD2 plays a role in the development and progression of hepatocellular carcinoma. It may be an early event in hepatocarcinogenesis and could be used as a potential prognostic indicator. (C) 2008 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available