4.5 Article

Correlating Disease-Related Mutations to Their Effect on Protein Stability: A Large-Scale Analysis of the Human Proteome

Journal

HUMAN MUTATION
Volume 32, Issue 10, Pages 1161-1170

Publisher

WILEY-BLACKWELL
DOI: 10.1002/humu.21555

Keywords

SAP annotation; probability; protein stability; disease

Funding

  1. MIUR-FIRB
  2. LIBI-International Laboratory for Bioinformatics [RBLA039M7M]
  3. University of Bologna
  4. Institute of Advanced Studies

Ask authors/readers for more resources

Single residue mutations in proteins are known to affect protein stability and function. As a consequence, they can be disease associated. Available computational methods starting from protein sequence/structure can predict whether a mutated residue is or not disease associated and whether it is promoting instability of the protein-folded structure. However, the relationship among stability changes in proteins and their involvement in human diseases still needs to be fully exploited. Here, we try to rationalize in a nutshell the complexity of the question by generalizing over information already stored in public databases. For each single aminoacid polymorphysm (SAP) type, we derive the probability of being disease-related (Pd) and compute from thermodynamic data three indexes indicating the probability of decreasing (P-), increasing (P+), and perturbing the protein structure stability (Pp). Statistically validated analysis of the different P/Pd correlations indicate that Pd best correlates with Pp. Pp/Pd correlation values are as high as 0.49, and increase up to 0.67 when data variability is taken into consideration. This is indicative of a medium/good correlation among Pd and Pp and corroborates the assumption that protein stability changes can also be disease associated at the proteome level. Hum Mutat 32:1161-1170, 2011. (C) 2011 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available