4.5 Article

A Mutation Database for Amyotrophic Lateral Sclerosis

Journal

HUMAN MUTATION
Volume 31, Issue 9, Pages 1003-1010

Publisher

WILEY
DOI: 10.1002/humu.21306

Keywords

amyotrophic lateral sclerosis; ALS resequence; clinical information

Ask authors/readers for more resources

An amyotrophic lateral sclerosis (ALS) mutation database has been constructed as a publicly accessible online resource for recording the nucleotide and amino acid variants identified in genes associated with ALS, along with corresponding clinical conditions. The database currently consists of more than 600 entries, including about 180 unique variants found in 25 disease-causative or disease-related genes. In addition to published data collected from literature, novel variants identified by microarray resequencing in our laboratory are incorporated into the database. Every reported gene has a respective page that provides information on its variation positions with various statistics, clinical characteristics, and primary references, as well as gene-sequence and protein-structure information that will assist in assessing variation significance. Users can access a homology search function to find variations in arbitrary sequences of interest and to check if they have already been described in the database. This database is expected to fulfill an essential need in terms of integrating comprehensive information on genetic and clinical data related to ALS, which will subsequently deepen our understanding of the possible mechanisms of the disease, as well as help with the clinical practice and treatment of ALS. The database is accessible at: https://reseq.lifesciencedb.jp/resequence/SearchDisease.do?targetId = 1. Data submission is open to all researchers and is highly encouraged. Hum Mutat 31:1003-1010, 2010. (c) 2010 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available