4.5 Article

Multistep process of FUS aggregation in the cell cytoplasm involves RNA-dependent and RNA-independent mechanisms

Journal

HUMAN MOLECULAR GENETICS
Volume 23, Issue 19, Pages 5211-5226

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddu243

Keywords

-

Funding

  1. Welcome Trust [075615/Z/04/z]
  2. Motor Neurone Disease Association [Buchman/Apr13/6096]
  3. Russian Foundation for Basic Research [RFBR N14-04-00796, RFBR 13-04-01633 A]
  4. Cardiff NMHRI 4-year PhD Studentship Programme
  5. Motor Neurone Disease Association [Buchman/Apr13/822-791] Funding Source: researchfish

Ask authors/readers for more resources

Fused in sarcoma (FUS) is an RNA-binding protein involved in pathogenesis of several neurodegenerative diseases. Aggregation of mislocalized FUS into non-amyloid inclusions is believed to be pivotal in the development of cell dysfunction, but the mechanism of their formation is unclear. Using transient expression of a panel of deletion and chimeric FUS variants in various cultured cells, we demonstrated that FUS accumulating in the cytoplasm nucleates a novel type of RNA granules, FUS granules (FGs), that are structurally similar but not identical to physiological RNA transport granules. Formation of FGs requires FUS N-terminal prion-like domain and the ability to bind specific RNAs. Clustering of FGs coupled with further recruitment of RNA and proteins produce larger structures, FUS aggregates (FAs), that resemble but are clearly distinct from stress granules. In conditions of attenuated transcription, FAs lose RNA and dissociate into RNA-free FUS complexes that become precursors of large aggresome-like structures. We propose a model of multistep FUS aggregation involving RNA-dependent and RNA-independent stages. This model can be extrapolated to formation of pathological inclusions in human FUSopathies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available