4.5 Article

Identification of seven genes essential for male fertility through a genome-wide association study of non-obstructive azoospermia and RNA interference-mediated large-scale functional screening in Drosophila

Journal

HUMAN MOLECULAR GENETICS
Volume 24, Issue 5, Pages 1493-1503

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddu557

Keywords

-

Funding

  1. National Basic Research Program of China [2014CB943100, 2011CB944304, 2012CB966600, 2015CB943003]
  2. Chinese Natural Science Fund [81222006]

Ask authors/readers for more resources

Non-obstructive azoospermia (NOA) is a complex and severe condition whose etiology remains largely unknown. In a genome-wide association study (GWAS) of NOA in Chinese men, few loci reached genome-wide significance, although this might be a result of genetic heterogeneity. Single nucleotide polymorphisms (SNPs) without genome-wide significance may also indicate genes that are essential for fertility, and multiple stage validation can lead to false-negative results. To perform large-scale functional screening of the genes surrounding these SNPs, we used in vivo RNA interference (RNAi) in Drosophila, which has a short maturation cycle and is suitable for high-throughput analysis. The analysis found that 7 (31.8%) of the 22 analyzed orthologous Drosophila genes were essential for male fertility. These genes corresponded to nine loci. Of these genes, leukocyte-antigen-related-like (Lar) is primarily required in germ cells to sustain spermatogenesis, whereas CG12404, doublesex-Mab-related 11E (dmrt11E), CG6769, estrogen-related receptor (ERR) and sulfateless (sfl) function in somatic cells. Interestingly, ERR and sfl are also required for testis morphogenesis. Our study thus demonstrates that SNPs without genome-wide significance in GWAS may also provide clues to disease-related genes and therefore warrant functional analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available