4.5 Article

Heterozygous LmnadelK32 mice develop dilated cardiomyopathy through a combined pathomechanism of haploinsufficiency and peptide toxicity

Journal

HUMAN MOLECULAR GENETICS
Volume 22, Issue 15, Pages 3152-3164

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/hmg/ddt172

Keywords

-

Funding

  1. Institut National de la Sante et de la Recherche Medicale
  2. Universite Pierre et Marie Curie-Paris
  3. Centre National de la Recherche Scientifique
  4. Association Francaise contre les Myopathies
  5. European Union (Euro-laminopathies) [018690, Marie Curie EXT-014051, Health-F2-2009-241577-Big-Heart]
  6. Deutsche Forschungsgemeinschaft [FOR-604-CA 618/1-1, FOR-604-CA 618/1-2]
  7. Leducq Foundation [11, CVD 04]

Ask authors/readers for more resources

Dilated cardiomyopathy (DCM) associates left ventricular (LV) dilatation and systolic dysfunction and is a major cause of heart failure and cardiac transplantation. LMNA gene encodes lamins A/C, proteins of the nuclear envelope. LMNA mutations cause DCM with conduction and/or rhythm defects. The pathomechanisms linking mutations to DCM remain to be elucidated. We investigated the phenotype and associated pathomechanisms of heterozygous Lmna(K32/) (Het) knock-in mice, which carry a human mutation. Het mice developed a cardiac-specific phenotype. Two phases, with two different pathomechanisms, could be observed that lead to the development of cardiac dysfunction, DCM and death between 35 and 70 weeks of age. In young Het hearts, there was a clear reduction in lamin A/C level, mainly due to the degradation of toxic K32-lamin. As a side effect, lamin A/C haploinsufficiency probably triggers the cardiac remodelling. In older hearts, when DCM has developed, the lamin A/C level was normalized and associated with increased toxic K32-lamin expression. Crossing our mice with the Ub(G76V)-GFP ubiquitin-proteasome system (UPS) reporter mice revealed a heart-specific UPS impairment in Het. While UPS impairment itself has a clear deleterious effect on engineered heart tissues force of contraction, it also leads to the nuclear aggregation of viral-mediated expression of K32-lamin. In conclusion, Het mice are the first knock-in Lmna model with cardiac-specific phenotype at the heterozygous state. Altogether, our data provide evidence that Het cardiomyocytes have to deal with major dilemma: mutant lamin A/C degradation or normalization of lamin level to fight the deleterious effect of lamin haploinsufficiency, both leading to DCM.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available